Energy Introspector: Coordinated Architecture-Level Simulation of Processor Physics
نویسندگان
چکیده
Increased power and heat dissipation in microprocessors impose limitations on performance scaling. Power and thermal management techniques coupled with workload dynamics cause increasing spatiotemporal variations in electrical and thermal stresses. The coupling between various physical phenomena (e.g., power, temperature, reliability, delay) will be critical to microarchitectural operations in future processors. Thus, we need modeling tools to enable the exploration of such physical interactions and drive development of microarchitectural solutions. This paper introduces a novel framework, Energy Introspector (EI), for the coordinated simulation of microarchitecture and physics models. The EI framework features flexible modeling of processor component hierarchy that enables simulating different microarchitecture and package designs. The proposed framework uses standardized interface to drive different implementations of physics models and captures their interactions. The EI supports parallel computation of models in anticipation of large-scale simulations (e.g., high core-count processors). We present a case study using the EI framework to assess reliability and performance tradeoffs with a full-system cycle-level simulation of an asymmetric chip multiprocessor (ACMP).
منابع مشابه
Energy Introspector: Simulation Infrastructure for Power, Temperature, and Reliability Modeling in Manycore Processors
This paper presents an architectureindependent modeling infrastructure called the Energy Introspector for estimating non-functional aspects of processors such as energy, power, temperature, area, delay, sensor, and reliability. The Energy Introspector supports processor modeling through the integration of various modeling tools. It features structural abstraction of physical and microarchitectu...
متن کاملEnergy Introspector: Standard Physical Library Interface for Full-System Microarchitecture and Multi-Physics Simulations
Modeling and simulation of future microarchitectures and applications require more than performance measurement and estimation. Analysis must be “holistic” including power, energy, thermal, and reliability concerns since these physical constraints and their coupled interactions have become major performance determinants of processors. Various models of different physical phenomena have been dev...
متن کاملUltra-Low-Energy DSP Processor Design for Many-Core Parallel Applications
Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...
متن کاملCompensation of Voltage and Current Harmonics in Hybrid Renewable Energy System Using Coordinated Power Control of RES Inverter
In this paper, an adaptive control strategy is proposed for the inverters of renewable energy source (RES) to simultaneously control the load voltage, grid current and the amount of instantaneous injected power to the grid in the presence of grid voltage distortions and nonlinearity of load current. In the proposed control strategy, the power quality of the local load can be settled based on th...
متن کاملطراحی ضرب کننده فرکانسی بر اساس حلقه قفل شده تاخیر دیجیتالی و با سرعت بالا
Lock and settling times are two parameters which are of high importance in design of DLL-based frequency multipliers. A new architecture for DLL-based frequency multipliers in digital domain is designed in this paper. In the proposed architecture instead of using charge pump, phase frequency detector and loop filter a digital signal processor is used. Gradient algorithm is used in the proposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013